
CASCADE CHARACTER OF THE GROWTH OF TURBULENT EDDIES 
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The development of discrete large-scale eddies in a turbulent shear flow is 
examined. 

The development of turbulent eddies is a complex phenomenon which combines features of 
discrete and continuous processes and is "on the boundary" between deterministic and random 
processes. As was noted in [I], in analyzing complicated objects on which empirical data is 
limited, the most fruitful approach is constructing simplified theoretical models which suc- 
cessively approximate the phenomenon. However, this approach has not been widely used in 
turbulence theory. 

Reynolds [2], having proposed that the dynamic characteristics of a flow be regarded as 
the sum of the mean and fluctuation components, actually introduced a turbulence model in the 
form of disordered, random perturbations superimposed on the main flow. Somewhat later the 
attention of investigators focused on the presence of characteristic discrete structures, or 
turbulent eddies, in a turbulent flow. The scale of these structures changes across the flow. 
The hypothesis evidently first advanced by Richardson in 1922 [3] was used for several years 
to describe this phenomenon. In accordance with this hypothesis, the evolution of turbulent 
eddies is connected with their cascade breakdown. The energy of turbulent motion is trans- 
formed to heat in the dissipation of the smallest eddies. 

In the study [I], Townsend first formulated the problem of constructing a simplified 
turbulence model representing a system of ordered large-scale eddies, and he proposed several 
models based on experimental data on space--time correlations in the flow. However, the Towns- 
end model did not sufficiently closely reflect the actual structure of the flow, and in par- 
ticular it failed to consider the development of the eddies. 

In the 1970s experiments involving visualization of turbulent shear flows showed [4] 
that such flows are much more ordered than was previously thought. It turned out that flows 
earlier considered to constitute "normal" turbulence have a quasiordered structure highly 
reminiescent of the Townsend model. Here, the eddies join together in pairs and become 
larger downstream. In [5], the impossibility of breaking up eddies in the case of two-dimen- 
sional turbulence was proved theoretically. 

Present integral methods of calculating flows on the basis of the Prandtl concept of mix- 
ing length successfully describe the distribution of turbulent shear stresses but agree poorly 
with empirical data on the structure of flows. The theory of hydrodynamic stability also is 
unable to explain several phenomena, such as the occurrence of secondary instability in the 
boundary layer [6] and aeroacoustic interaction [7]. In connection with this, there is a 
need to construct a turbulence model which corresponds to the present level of knowledge about 
turbulence. 

Below we present a model of the eddy structure of a flow in the case of longitudinal flow 
about a smooth surface, using a minimum number of assumptions in constructing the model. Here, 
we refine and elaborate on the conclusions reached in [8] regarding the effect of perturbations 
propagated across the flow on the turbulence structure. 

As is known from experiments (see the surveys in [4, 7, 9]), quasiordered motion occurs 
in the boundary layer in the form of periodic "ejections" of slowed fluid from the viscous 
sublayer into the external region of the boundary layer. Zones of quasiordered motion are 
characterized by turbulent pulsations of high intensity and an increase in the scale of turb- 
ulence connected with the pairwise combination of eddies. Obviously, this zone does not oc- 
cupy the entire cross section of the boundary layer: there is a viscous sublayer in the wall 
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region, while in the external region of the boundary layer turbulence decays. As was noted 

in [8], it follows from similarity considerations that the distance from the wall to the in- 
ternal boundary of the eddy growth zone is proportional to the thickness of the viscous 
sublayer, while the distance to the external boundary is proportional to the thickness of 
the boundary layer, i.e., 

kl v ~ g ~ k s 6 .  (1) 

We will evaluate the coefficients kl and k2. It was established in [i0] that at y+ = 
10-12 the intensity of the pulsations of the longitudinal component of velocity reach a 
maximum, the asymmetry factor passes through zero, and the excess factor is minimal. This 
provides grounds for suggesting that it is here, on the external boundary of the viscous sub- 
layer, that intensive growth of turbulent eddies begins. As we proposed in [8], this growth 
is associated with resonance interaction. We therefore take the mean value for the coeffi- 
cient kz = II. In accordance with the data in [ii], the increase in the turbulence scale 
stops at y/6 = 0.22, from which k2 = 0.22. 

An inequality similar to (I) also limits the zone of eddy development in the case of 
flow in a circular pipe, but it is necessary here to replace the thickness of the boundary 
layer 8 by the diameter of the pipe d. In this case, the dimensionless coefficients take 
values kzd = iI and k=d = 0.ii. 

If we represent a turbulent eddy in the form of a quasisolid rotating cylinder, then 
the frequency of rotation of such an eddy is determined by the gradient of the mean flow vel- 
ocity at the point of its formation: 

1 d < u }  
o) - -  ( 2 )  

2 dg 
Now we assume t h a t  t he  d i s c r e t e  eddy g e n e r a t e s  o s c i l l a t i o n s  w i t h  t h e  be low  f r e q u e n c y  i n t o  
t h e  s u r r o u n d i n g  medium 

f = o/2~. (3) 

To a p p r o x i m a t e  t h e  u n i v e r s a l  v e l o c i t y  p r o f i l e  i n  t he  b o u n d a r y  l a y e r ,  i t  i s  u s e f u l  t o  
use the Van Driest formula. This formula gives a single analytic expression for the entire 

profile [Ii]: 

y+ 

J 
' 2@+ 

u + =  1 + V 1 @ (2• - - e x p (  -g+/A)] 2 
(4) 

where • = 0.4 and A = 26. Then the dimensionless frequency of the oscillations generated by 
the eddy, formed at a distance y+ from the wall, is determined by the relation 

+ 
At y 

1 f + =  
2 ~ { l + F l + ( 2 •  ~} 

< 3, the value of f+ asymptotically approaches its maximum value 

(5) 

~x--= 1/(4~). (6) 

The following assumption concerns the propagation of oscillations generated by the eddy 
("long-range waves" in accordance with [12]) along a normal to the streamlines. We will as- 
sume that such waves are propagated in a manner similar to acoustic waves and are reflected 
from the wall which bounds the flow. The rate of propagation of the perturbations a in a 
first approximation is taken to be constant across the flow. Then, for certain distances be- 
tween the oscillation source and the wall, stationary waves will be formed, and the amplitude 
of the oscillations near the source will increase sharply. If we assume that the oscillation 
source is located at an antinode of the stationary wave, the family of resonance frequencies 

can be written as follows: 

~ I Z -  ] a 
fn = - - ,  (7) 

4 y 
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where n = i, 2, 3, ... It is evident from Eq. (7) that the resonance distance decreases 
with an increase in the frequency fn and with a decrease in n. But since the frequency of 
the oscillations which occur in the flow is bounded above by Eq. (6), and since n cannot be 
less than unity, then, beginning with a certain distance from the wall, resonance growth of 
the disturbances will be impossible. This obviously occurs at the nearest boundary of the 

resonance zone (i), i.e., at the boundary of the viscous sublayer. 

Comparing Eqs. (6) and (7) and considering (I), we obtain the rate of propagation of the 
oscillations: 

a = u~k:/~ (8) 

Then, from (7), 

/~__ in-- 1 k, (9) 

4~ g+ 
Curve 1 in  F i g .  1 c o r r e s p o n d s  to  Eq. ( 5 ) .  I t s  p h y s i c a l  s i g n i f i c a n c e  i s  t he  f r e q u e n c y  

o f  the  o s c i l l a t i o n s  g e n e r a t e d  by the  eddy formed a t  t he  d i s t a n c e  y+ f rom the  w a l l .  The 
f a m i l y  of  l i n e s  2-5 i s  d e s c r i b e d  by Eq. (9) a t  n = 1-4 and k~ = 11. These a r e  r e s o n a n c e  
f r e q u e n c i e s  c o r r e s p o n d i n g  to  the  g i v e n  d i s t a n c e  from the  w a l l .  

Le t  us examine the  c o n s e q u e n c e s  o f  the  above a s s u m p t i o n s .  The f i r s t  and most  i m p o r t a n t  
c o n s e q u e n c e  i s  c a s c a d e  g rowth  o f  t u r b u l e n t  e d d i e s  w i t h  i n c r e a s i n g  d i s t a n c e  from the  w a l l .  

We w i l l  f o l l o w  the  deve lopmen t  o f  a d i s c r e t e  eddy d u r i n g  t h e  " e j e c t i o n "  p e r i o d .  We w i l l  
assume t h a t  an eddy i s  formed in  the  v i s c o u s  s u b l a y e r  a t  y+ < 3. At t h i s  moment i t  c o r r e -  
sponds  to a p o i n t  on c u r v e  1 l y i n g  to  t he  l e f t  o f  p o i n t  A. Under t he  i n f l u e n c e  o f  t he  Zhukov 
buoyancy  f o r c e  t he  eddy i s  k e p t  away from the  w a l l .  I f  we i g n o r e  the  r e d u c t i o n  in  t he  a n g u -  
l a r  v e l o c i t y  o f  t he  eddy due to  v i s c o u s  d i s s i p a t i o n ,  t h e n  the  p r o c e s s  o f  r e t r e a t  o f  t he  eddy 
from the wall corresponds to the horizontal line in Fig. i. At point B this line intersects 

line 2. 

Point B determines the distance from the wall at which the natural oscillations of the 
eddy are significantly amplified by resonance interaction with oscillations reflected from 
the wall. It is known from experiments that such interaction leads to a situation whereby 
two adjacent eddies begin to rotate about a common axis and merge, forming a larger eddy. 
The frequency of rotation of the new eddy is determined by the velocity gradient at the 
point of its formation. Drawing a vertical line through B, we obtain point C at the inter- 
section with curve i. Point C corresponds to the formed eddy. 

The cascade consisting of the formation of the eddies, their movement away from the 
wall, and their destruction, will continue until the thickness of the shear layer is ex- 
hausted, i.e., until the energy of the oscillations reflected from the wall is sufficient to 
remove the eddies from the state of dynamic equilibrium. 

Thus, the gradual increase in the size of an eddy is accompanied by a gradual decrease 
in the frequency of its rotation. It can be shown that the assumption of constancy of the 
rate of propagation of the oscillations a across the boundary layer leads to the conclusion 
that the characteristic dimensions of the eddies at the points of their formation are linear- 

ly dependent on y. 

The points B, D, F, ..., at which paired union of the eddies occurs in essence determine 
the position of the zone of instability for eddies with a specified natural frequency f+. 
Here, it is not clear whether the instability is determined by the possibility of pairwise 
union or whether the position of the instability zone is such that the formation of one large 
eddy involves the disintegration of approximately two small eddies. 

The next important conclusion which follows from the proposed model of boundary turbu- 
lence consists of the fact that several energy-carrying frequencies must be distinguished in 
the spectrum of turbulent pulsations. In fact, it follows from the eddy development scheme 
shown in Fig. i that the natural frequencies of the oscillations generated by the eddies must 
be grouped near horizontal lines AB, CD, EF, .... Since the formation of a turbulent eddy 
is a random process, the spectral characteristic ef each stage of the cascade is described 
by a certain stochastic distribution. 
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Fig. I. Theoretical model of the cascade growth of eddies in a boundary layer. 
Calculation: I) from (5); 2-5) from (9) with k, = ii and n = 1-4. 

Fig. 2. Approximation of the spectra of the turbulent pulsations. Calculation 
is from (i0); experimental points are from [13]. 

The above model only approximately describes the instability of the boundary layer in 
regard to perturbations propagated across the flow. To check the validity of the assumptions 
made, we will compare the conclusions reached with well-known experimental data. 

A detailed survey was presented in [9] of studies of spectra of pulsations in a boundary 
layer. Many investigators have noted the presence of maxima in such spectra, but the numeri- 
cal values of the dimensionless frequencies carrying the maximum energy of the oscillations, 
measured under different conditions, often differ from each other. This discrepancy was re- 
solved to a significant extent in [13], where it was shown that the spectra of the pulsa- 
tions have several maxima. Meanwhile, the values of the frequencies which carry the most 
energy remain constant across the boundary layer. 

+ Figure 2 shows as an example experimental points obtained in [13] for Re** = 3070 and 
y = 81.5. It is evident from the figure that such a spectrum can, with a high degree of 
accuracy, be approximated by the expression 

. o | f~ -  ~ c i ( g )  exp - -  
i = 1  

w h e r e  i = 1 ,  2 ,  . . . ,  m a r e  s e r i a l  n u m b e r s  o f  t h e  maxima i n  t h e  s p e c t r a .  
e r t i e s  o f  t h e  f u n c t i o n  Fu m e n t i o n e d  i n  [ 1 3 ] ,  

(I0) 

Here, from the prop- 

adnf)~ i (IZ) 

follows the normalization condition 

m 

X~ c~ (v) = 1. (12) 

The coefficients ci(y) can be regarded as the probability that the eddy located at the given 
point of the flow belongs to the i-th stage of the cascade. 

The values of the frequencies fi obtained in such an approximation agree well with the 
characteristic frequencies obtained from the proposed model by means of Fig. i. Having made 
a construction which is the inverse of that made earlier, we can refine the position of the 
instability zone as shown in Fig. 3. It can be seen from the figure that curve 3, construct- 
ed from experimental data, deviates somewhat from curve 2, constructed from Eq. (9) with n = 
1 and k~ = ii. Thus, the rate of propagation of the perturbations a can be assumed constant 
only in the first approximation. 
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Fig. 3. Refinement of the eddy growth model with allowance for the empirical 
data. Calculation: I) from (5); 2) from (9) with kl = ii and n = i; 3) con- 
struction from experimental data. Experiment: 4) analysis of data from [13]; 
5) [14]. 

Fig. 4. Dependence of the characteristic frequencies of the pulsations in a 
circular pipe on the Reynolds number. Calculation: 1-4; from (15) with i = 
1-4; 5) (16); 6) (17). The experimental points are from [16]. 

It is interesting to compare the graph obtained with experimental data from [14] on the 
rate of propagation of "ejections" over the radius of a pipe. It can be concluded from Fig. 
3 that the time of movement of the eddy from the wall to the point with the coordinate y is 
close to the period of the pulsations at the given point. This may signify that the oscilla- 
tion carrier in "forward" motion of the eddy away from the wall is the eddy itself, and the 
feedback ensuring the nucleation of new eddies is provided by sound waves propagating at a 
velocity considerably greater than a. If such a conclusion is confirmed by later investiga- 
tions, this will mean that the position of the instability zone (Fig. 3) depends on the Mach 
number. 

There is one more important consequence of the above assumptions -- an increase in the 
number of maxima in the pulsation spectra with an increase in the Reynolds number. Let us 
illustrate this conclusion using the example of flow in a circular pipe~ since the frequency 
range of the pulsations in the boundary layer was already examined in [8]. Here we will con- 
sider the universal character of Eq. (4). 

The dynamic velocity in a circular pipe is equal to [15] 

u~ = v ~ h / 8 ,  

w h i l e  the  S t r o u h a l  number i s  d e t e r m i n e d  by t he  i d e n t i t y  

(13) 

Sh = f+ Re (u~/v) 2. (14) 

I f  we c o n s i d e r  t h a t  t he  p o s i t i o n  of  t he  i n s t a b i l i t y  zone ( F i g .  3) i s  i n d e p e n d e n t  o f  Re, t hen  
the  i - t h  maximum in  the  p u l s a t i o n  s p e c t r u m  c o r r e s p o n d s  to  the  e q u a t i o n  

Shi = f~Re2~/8 (15) 

The values of the frequencies f+i in the case of a circular pipe differ somewhat from 
the values obtained above for the boundary layer. Using the values of f+i calculated from 
the data in [16] and the Blausius formula for %, we can construct lines I, 2, 3, 4, ..., in 
Fig. 4 corresponding to the horizontal lines in Fig. 3. 

It should be noted that, in the case of laminar flow, cascade eddy growth does not oc- 
cur, and the frequency of the pulsations which arise does not exceed 

Re 64 2 
Shmax --" (16) 

32~ Re 

A graph of this relation is represented by line 5 in Fig. 4. 
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As was noted above, with y/d = k=d = 0.Ii, turbulent eddies again become stable due to 
the decay of pulsations caused by viscosity. Equations (i), (6), and (13) can be used to de- 
termine the lower boundary of the frequency range of the pulsations: 

Shmm= kid 1/ ._~8 (17) 
4aked 

The graph  o f  Eq. (17) i s  r e p r e s e n t e d  by l i n e  6 in  F ig .  4. Below t h i s  b o u n d a r y  the  i n t e n s i t y  
o f  the  p u l s a t i o n s  q u i c k l y  d e c r e a s e s ,  which i s  m a n i f e s t  in  a d e c r e a s e  i n  t h e  c o e f f i c i e n t s  
cm(y) .  I t  can be seen  from the  g raph  t h a t  t h e  number of  maxima in  the  s p e c t r u m  be tween  Sh~ 
and Shmin i n c r e a s e s  d i s c r e t e l y  w i t h  an i n c r e a s e  i n  t h e  Reynolds  number.  

The maximum f r e q u e n c y  of  t he  p u l s a t i o n s  f41 in  [16] was c l e a r l y  r e c o r d e d  o n l y  in  the  
transverse component of the velocity fluctuations. Also, as can be seen from Fig. 3, up to 
the second union (y+ < 30) the turbulent eddies do not significantly affect the character of 
the velocity diagram. Both of these phenomena are evidently connected with the fact that in 
this region the eddies carrying the maximum frequency f+: remain nearly two-dimensional. 
Thus, it can be concluded that the presence of a minimum of two stages of a cascade is neces- 
sary for the formation of a stable turbulence structure. 

This conclusion is also supported by the pattern of the transition from laminar to turbu- 
lent flow. It is evident from Fig. 4 that a formally single-stage turbulent cascade may arise 
beginning with Re = 1200. In fact, flow remains laminar in the pipe up to Re = 2300~ and the 
transition to turbulent flow is completed at Re = 4000, which corresponds to the occurrence 
of a two-stage cascade (Fig. 4). 

NOTATION 

y, distance from the wall bounding the flow; 6, thickness of the turbulent boundary 
layer; d, pipe diameter; <u>, u', mean and fluctuation components of longitudinal velocity 
at a point of the flow; <u'=>E, <u'a(f)>, averaged square of fluctuation velocity and its 
spectral density; UT, dynamic velocity; v, mean velocity across the pipe; ~, angular velocity 
of eddy; f, frequency of oscillations; v, kinematic viscosity of the fluid; %, Darcy coeffi- 
cient; kl, k=, kld, kad, ci(y), dimensionless coefficients; o, dispersion characteristic of 

v + + ~ the velocity pulsation spectra; = yUT/V, dimensionless distance from wall; u = -UP/UT, 
�9 �9 + J2 �9 �9 

dimenslonless veloclty; f = fv/u r, dlmenslonless frequency of the pulsations; Re**, Rey- 
nolds number determined from the momentum thickness in the boundary layer; Re = vd/v, Rey- 
nolds number for pipe flow; Sh = fd/v, Strouhal number; F u = f<u'=(f)>/<u'a>E, spectral 
funct ion. 
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ATTENUATION OF LOCAL GAS SWIRLING IN A CHANNEL 

OF ANNULAR CROSS SECTION 

A. V. Borisov, G. V. Konyukhov, and A. I. Petrov UDC 532.542 

The attenuation of local gas swirling in smooth channels of annular cross sec- 
tion with rin/r o = 0.89-0.95 is investigated. Calculating equations satisfac- 
torily describing the experimental data are obtained. 

We consider the established flow of a viscous incompressible liquid in a relatively thin 
cylindrical channel of annular cross section with a ratio of inside to outside radii rin/r o = 0.9 
behind a swirling device at moderate velocities. 

Under the assumption of constancy of all the stream parameters along the circumference 
of the channel, isotropy of the turbulent properties, the absence of secondary flows, and 
D=V/~x 2 << D=V/~r 2, the equations of conservation of momentum [i], written through the shear 
stresses, have the form 

OP _ 1 O(r~r,~) (1 )  
) 

Ox r Or 

6Vo 1 O (r 2~,o) (2)  
pV~ 

Ox r 2 Or 
In connection with the fact that the variation along the channel of the average swirling 

over the cross section V0/V x is of primary interest for engineering applications, it is ex- 
pedient to convert to parameters averaged over a cross section in Eqs. (i) and (2). 

Taking the relative thickness of the channel as small for the case under consideration, 
~/r o ~ 0.i, where ~ = r o - rin, taking the shear stresses at the inner and outer walls as 
equal in absolute value and opposite in sign, TWO =--[win = --TW, as well as D/~r(Dp/Dx) = O, 
we integrate Eqs. (I) and (2) over r from rin to ro, having preliminarily multiplied the first 
by r and the second by r 2. After integration we average the terms of the second equation over 
the channel cross section. As a result, we obtain 

dP/dx = - -  2~ , : , .~  ( r  o + r ~  ) / (~o  ~ - -  q~ . )  = - -  2 ~ . , . ~ / ~  = - -  2 ( ' c ~ : / 8 )  c o s  ,p, (3) 

,(0 ro ' , o '~ 2 2 
p ! f2Vx(dVo/dx)dr  / j rdl" = - - 2 T w r o ( r ;  @ ri~n)/(ro - -  ~i1) 

tin tin 

o r ,  r e p l a c i n g  ( r ~ o  + r 2 i n  ) b y  ( r  o + r •  w i t h  an  e r r o r  o f  no  m o r e  t h a n  1%, 

pV~ (dVoldx) = - -  2 ( T w l S )  s i n  % (4) 
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